

ANNUAL REPORT 2007

UIUC, June 12, 2007

Modeling of Mold Oscillation

Vivek Natarajan (PhD Student) **Joseph Bentsman Brian G. Thomas**

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Dunuous

Casting

nsortium

Mold Oscillation System

Mold Oscillation:

Required to avoid sticking of molten steel to mold wall, to induce required stress on the shell and get desired surface Quality

Function of Oscillation System:

To ensure mold tracks the desired displacement and Velocity profile

Components:

Primary beam, support beam, hydraulic actuator, counter weight, Pivot, Mold table, Mold

Operation, Problem & Objective

Operation Principle:

- Hydraulic actuator applies force on counter weight and forces it to oscillate
- Counter weight is attached to the beam, hence beam oscillates and consequently mold oscillates

Problem:

- Increasing the speed of casting requires increased frequency of mold oscillation.
- Increasing frequency of oscillation leads to resonance frequency of the beam getting excited. This distorts mold displacement and velocity profile

Objective:

• To develop a controller so as to ensure tracking of desired displacement and velocity profile by mold

- Resonance occurs due to primary beam
- System is symmetric
- Beam Length to thickness ratio <3, hence Euler-Bernoulli model for beam not suitable
- Hydraulic actuator Nonlinear behavior
- Mold has significant weight and hence relevant dynamics

Simplified Model

• Three - way valve configurations as opposed to four-way valve configuration

•Parameters available from reference

•Similar Nonlinear Characteristics

•PID controller implemented on this model , the feedback signals being the error between the desired and actual displacement and velocities of the Piston

University of Illinois at Urbana-Champaign

Actuator Simulation

.

Metals Processing Simulation Lab

Linear Systems – If input is at frequency 'f', output is also is at a frequency 'f'

Actuator has nonlinear characteristics

•

9

BG Thomas

Mold Wall Friction

- Friction between Mold wall and Steel Additional disturbance at the mold end
- Time varying Frictional force Stick-Slip effect
- Might be another source of higher harmonics
- Identifying Disturbance
 - Improve controller performance
 - Estimate of frictional force useful as tool for monitoring casting process
- Method of Identification
 - Choose a friction model (e.g. viscous friction, but with time dependant co-efficient of friction)

Metals Processing Simulation Lab

 Based on model, design Disturbance Observer (a computer code) that gives disturbance estimate from displacement and velocity measurements

University of Illinois at Urbana-Champaign

Conclusions and Future work

- Models for Beam and Actuator identified
- Simulations of models show expected behavior Flexibility and Resonance feature of Beam, Nonlinearities of Actuator
- Identified probable source of Resonance excitation

Future Work

- Further verify beam model using FEM and obtain actual system parameters
- Study the effect of coupling between actuator and beam
- Develop Control Strategy to overcome Resonance problem and ensure satisfactory tracking by mold
- Develop Disturbance observer to estimate mold wall friction

13

BG Thomas

Acknowledgements

- Nucor Steel Decatur
- ME 470 group

(Jacob Whittaker, Jian Shong Tan, Joshua Nuechterlein, Shawn Damm)

 Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Algoma, Corus, Labein, Mittal Riverdale, Baosteel, Steel Dynamics)

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	BG Thomas	15